8 research outputs found

    High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas

    Full text link
    [EN] We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few mu m(2), yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. C. G.-M. acknowledges support from project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE). This work was also supported by the EU-funded projects FP7-ICT PHOXTROT (No. 318240), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34).Lechago-Buendia, S.; García Meca, C.; Sánchez Losilla, N.; Griol Barres, A.; Martí Sendra, J. (2018). High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas. Optics Express. 26(20):25645-25656. https://doi.org/10.1364/OE.26.02564525645256562620Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., & Juodkazis, S. (2016). Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5(8), e16133-e16133. doi:10.1038/lsa.2016.133Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206Zheludev, N. I., & Kivshar, Y. S. (2012). From metamaterials to metadevices. Nature Materials, 11(11), 917-924. doi:10.1038/nmat3431Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070Chen, X., Li, C., & Tsang, H. K. (2011). Device engineering for silicon photonics. NPG Asia Materials, 3(1), 34-40. doi:10.1038/asiamat.2010.194Luka, G., Ahmadi, A., Najjaran, H., Alocilja, E., DeRosa, M., Wolthers, K., … Hoorfar, M. (2015). Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 15(12), 30011-30031. doi:10.3390/s151229783Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81Yih Shiau. (1976). Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(11), 869-872. doi:10.1109/tmtt.1976.1128980Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60Alù, A., & Engheta, N. (2010). Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Physical Review Letters, 104(21). doi:10.1103/physrevlett.104.213902Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237Giannini, V., Fernández-Domínguez, A. I., Heck, S. C., & Maier, S. A. (2011). Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 111(6), 3888-3912. doi:10.1021/cr1002672Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727Van Acoleyen, K., Rogier, H., & Baets, R. (2010). Two-dimensional optical phased array antenna on silicon-on-Insulator. Optics Express, 18(13), 13655. doi:10.1364/oe.18.013655García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53Robinson, J. P., & Roederer, M. (2015). Flow cytometry strikes gold. Science, 350(6262), 739-740. doi:10.1126/science.aad6770Mao, X., Nawaz, A. A., Lin, S.-C. S., Lapsley, M. I., Zhao, Y., McCoy, J. P., … Huang, T. J. (2012). An integrated, multiparametric flow cytometry chip using «microfluidic drifting» based three-dimensional hydrodynamic focusing. Biomicrofluidics, 6(2), 024113. doi:10.1063/1.3701566Huang, N.-T., Zhang, H., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 14(7), 1230-1245. doi:10.1039/c3lc51211hPsaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101), 381-386. doi:10.1038/nature05060Cheung, K. C., Di Berardino, M., Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., … Tárnok, A. (2010). Microfluidic impedance-based flow cytometry. Cytometry Part A, 77A(7), 648-666. doi:10.1002/cyto.a.20910Cheung, K., Gawad, S., & Renaud, P. (2005). Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A, 65A(2), 124-132. doi:10.1002/cyto.a.20141Xie, X., Cheng, Z., Xu, Y., Liu, R., Li, Q., & Cheng, J. (2017). A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Analytical Methods, 9(7), 1201-1212. doi:10.1039/c6ay03326aBlasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., … Rees, P. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications, 7(1). doi:10.1038/ncomms10256Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Frankowski, M., Theisen, J., Kummrow, A., Simon, P., Ragusch, H., Bock, N., … Neukammer, J. (2013). Microflow Cytometers with Integrated Hydrodynamic Focusing. Sensors, 13(4), 4674-4693. doi:10.3390/s130404674Barat, D., Spencer, D., Benazzi, G., Mowlem, M. C., & Morgan, H. (2012). Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip, 12(1), 118-126. doi:10.1039/c1lc20785gTesta, G., Persichetti, G., & Bernini, R. (2014). Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical Optics Express, 6(1), 54. doi:10.1364/boe.6.000054Etcheverry, S., Faridi, A., Ramachandraiah, H., Kumar, T., Margulis, W., Laurell, F., & Russom, A. (2017). High performance micro-flow cytometer based on optical fibres. Scientific Reports, 7(1). doi:10.1038/s41598-017-05843-7Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071Potcoava, M. C., Futia, G. L., Aughenbaugh, J., Schlaepfer, I. R., & Gibson, E. A. (2014). Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. Journal of Biomedical Optics, 19(11), 111605. doi:10.1117/1.jbo.19.11.111605Traub, M. C., Longsine, W., & Truskett, V. N. (2016). Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering, 7(1), 583-604. doi:10.1146/annurev-chembioeng-080615-034635Xu, B.-B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., & Sun, H.-B. (2013). Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab on a Chip, 13(9), 1677. doi:10.1039/c3lc50160dZucker, R. M., Ortenzio, J. N. R., & Boyes, W. K. (2015). Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry Part A, 89(2), 169-183. doi:10.1002/cyto.a.22793Kowalczyk, B., Lagzi, I., & Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 16(2), 135-148. doi:10.1016/j.cocis.2011.01.00

    Development of a parallel local oxidation nanolithography instrument

    Get PDF
    We have developed an instrument to perform local oxidation nanofabrication processes in parallel. The instrument has three major components, the stamp holder, the sample base, and the supporting frame. The sample base is actuated by three precision screws that enable motion in the three orthogonal directions. Sample base and stamp holder are enclosed and sealed inside a chamber with two inlets to introduce different gases. The chamber is supported by a rigid frame. We show the parallel patterning of silicon oxide features on silicon surfaces by the application of a bias voltage between the sample and the stamp when they are in contact. Arrays of parallel lines separated by 100 nm have been patterned over cm2 regions in one minute.This work was financially supported by the MCyT (Spain) (MAT2003-02655) and the EU integrated project NAIMO (Grant No. NMP4-CT-2004-500355).Peer reviewe

    Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface

    Get PDF
    “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”A dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-lambda and 0.29-lambda thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.This work was supported by the Spanish Government through the Consolider Engineering Metamaterials under Contract CSD2008-00066 and Contract TEC2011-28664-C02.Torres, V.; Sánchez Losilla, N.; Etayo, D.; Ortuño Molinero, R.; Navarro-Cía, M.; Martínez Abietar, AJ.; Beruete, M. (2014). Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface. IEEE Photonics Technology Letters. 26(16):1679-1682. https://doi.org/10.1109/LPT.2014.2330860S16791682261

    On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

    Full text link
    [EN] Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high-directivity (>150), low-loss, and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control. We propose the use of these nanoantennas as versatile building blocks to develop wireless (unguided) silicon photonic devices, which considerably enhance the range of achievable integrated photonic functionalities. As examples of applications, we demonstrate 160 Gbit·s-1 data transmission over mm-scale wireless interconnects, a compact low-crosstalk 12-port crossing, and electrically reconfigurable pathways via optical beam steering. Moreover, the realization of a flow micro-cytometer for particle characterization demonstrates the smart system integration potential of our approach as lab-on-chip devices.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. This work was also supported by project TEC2015-73581-JIN (AEI/FEDER, UE), the EU-funded projects FP7-ICT PHOXTROT (No.318240) and H2020-, the EU-funded H2020-FET-HPC EXANEST (No.671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) CG-M acknowledges support from Generalitat Valenciana’s VALi+d postdoctoral program (exp. APOSTD/ 2014/044). We thank David Zurita for his help in the design of the data acquisition code for the sensing application.García Meca, C.; Lechago-Buendia, S.; Brimont, ACJ.; Griol Barres, A.; Mas Gómez, SM.; Sánchez Diana, LD.; Bellieres, LC.... (2017). On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications. 6:e17053-e17053. https://doi.org/10.1038/lsa.2017.53e17053e170536Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305.Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597.Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31.Yu NF, Capasso F . Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150.Condrat C, Kalla P, Blair S . Crossing-aware channel routing for integrated optics. IEEE Trans Comput-Aided Design Integr Circuits Syst 2014; 33: 814–825.Lee BG, Rylyakov AV, Green WMJ, Assefa S, Baks CW et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J Lightw Technol 2014; 32: 743–751.Robinson JP, Roederer M . Flow cytometry strikes gold. Science 2015; 350: 739–740.Mao XL, Nawaz AA, Lin SC, Lapsley MI, Zhao YH et al. An integrated, multiparametric flow cytometry chip using 'microfluidic drifting' based three-dimensional hydrodynamic focusing. Biomicrofluidics 2012; 6: 024113.Schurr JM . Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 1977; 4: 371–431.Padgett M, Bowman R . Tweezers with a twist. Nat Photonics 2011; 5: 343–348.Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Select Top Quantum Electron 2006; 12: 1699–1705.Chan JN, Hendry G, Biberman A, Bergman K . Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightw Technol 2010; 28: 1305–1315.Vlasov Y, Green WMJ, Xia FN . High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2008; 2: 242–246.Novotny L, van Hulst N . Antennas for light. Nat Photonics 2011; 5: 83–90.Fischer H, Martin OJF . Engineering the optical response of plasmonic nanoantennas. Opt Express 2008; 16: 9144–9154.Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011; 2: 267.Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427.Koenderink AF, Alù A, Polman A . Nanophotonics: shrinking light-based technology. Science 2015; 348: 516–521.Polman A . Plasmonics applied. Science 2008; 322: 868–869.Brongersma ML, Shalaev VM . The case for plasmonics. Science 2010; 328: 440–441.Alù A, Engheta N . Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 2010; 104: 213902.Solís DM, Taboada JM, Obelleiro F, Landesa L . Optimization of an optical wireless nanolink using directive nanoantennas. Opt Express 2013; 21: 2369–2377.Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014; 5: 4354.Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010; 329: 930–933.Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR . Large-scale nanophotonic phased array. Nature 2013; 493: 195–199.Van Acoleyen K, Bogarets W, Jágerská J, Le Thomas N, Houdré R et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt Lett 2009; 34: 1477–1479.Van Acoleyen K, Rogier H, Baets R . Two-dimensional optical phased array antenna on silicon-on-insulator. Opt Express 2010; 23: 13655–13660.Rodríguez-Fortuño FJ, Puerto D, Griol A, Bellieres L, Martí J et al. Sorting linearly polarized photons with a single scatterer. Opt Lett 2014; 39: 1394–1397.Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS . All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604.Filonov DS, Krasnok AE, Slobozhanyuk AP, Kapitanova PV, Nenasheva EA et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl Phys Lett 2012; 100: 201113.Cárdenas J, Poitras CB, Robinson JT, Preston K, Chen L et al. Low loss etchless silicon photonic waveguides. Opt Express 2009; 17: 4752–4757.Balanis CA . Antenna Theory: Analysis and Design. Wiley: New York; 1982.Kosako T, Kadoya Y, Hofmann HF . Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 2010; 4: 312–315.Subbaraman H, Xu XC, Hosseini A, Zhang XY, Zhang Y et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express 2015; 23: 2487–2511.Della Corte FG, Esposito Montefusco M, Moretti L, Rendina I, Cocorullo G . Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 2000; 88: 7115–7119.Chu T, Yamada H, Ishida S, Arakawa Y . Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express 2005; 13: 10109–10114.Wang WJ, Zhao Y, Zhou HF, Hao YL, Yang JY et al. CMOS-compatible 1 × 3 silicon electrooptic switch with low crosstalk. IEEE Photon Technol Lett 2011; 23: 751–753.Cui KY, Zhao Q, Feng X, Liu F, Huang YD et al Ultra-compact and broadband 1 × 4 thermo-optic switch based on W2 photonic crystal waveguides. Proceedings of 2005 Opto-Electronics and Communications Conference; 28 June–2 July 2015; Shanghai, IEEE: Shanghai 2015.Lee BG, Dupuis N, Pepeljugoski P, Schares L, Budd R et al. Silicon photonic switch fabrics in computer communications systems. J Lightw Technol 2015; 33: 768–777.Song WW, Gatdula R, Abbaslou S, Lu M, Stein A et al. High-density waveguide superlattices with low crosstalk. Nat Commun 2015; 6: 7027.Melati D, Morichetti F, Gentili GG, Melloni A . Optical radiative crosstalk in integrated photonic waveguides. Opt Lett 2014; 39: 3982–3985.Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 2016; 7: 70.Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M et al. Inertial focusing cytometer with integrated optics for particle characterization. Technology (Singap World Sci) 2013; 1: 27–36.Hunt HC, Wilkinson JS . Multimode interference devices for focusing in microfluidic channels. Opt Lett 2011; 36: 3067–3069

    Nanolitografía de oxidación local en paralelo : instrumento, cinética y nanofabricación

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Aplicada. Fecha de lectura: 20-07-201

    Development of a parallel local oxidation nanolithography instrument

    Get PDF
    We have developed an instrument to perform local oxidation nanofabrication processes in parallel. The instrument has three major components, the stamp holder, the sample base, and the supporting frame. The sample base is actuated by three precision screws that enable motion in the three orthogonal directions. Sample base and stamp holder are enclosed and sealed inside a chamber with two inlets to introduce different gases. The chamber is supported by a rigid frame. We show the parallel patterning of silicon oxide features on silicon surfaces by the application of a bias voltage between the sample and the stamp when they are in contact. Arrays of parallel lines separated by 100 nm have been patterned over cm2 regions in one minute.This work was financially supported by the MCyT (Spain) (MAT2003-02655) and the EU integrated project NAIMO (Grant No. NMP4-CT-2004-500355).Peer reviewe

    Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope.

    Get PDF
    We report a tip-based nanofabrication method to generate carbon nanopatterns. The process uses the field-induced transformation of carbon dioxide gas into a solid material. It requires the application of low-to-moderate voltages ∼ 10–40 V. The method allow us to fabricated sub-25 nm dots and it can be up scaled to pattern square centimeter areas. Photoemission spectroscopy shows that the carbon is the dominating atomic species of the fabricated structures. The formation of carbon nanostructures and oxides by atomic force microscope nanolithography expands its potential by providing patterns on the same sample with different chemical composition.We are very grateful to José M. Soler for their insightful and motivating comments. We acknowledge financial supports from the Ministerio de Ciencia, Investigación e Innovación (Grant Nos. MAT2009-08650; CTQ2007-31076-E; and MAT2008-06765).Peer reviewe

    Using a Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links

    Full text link
    Optical carrier reduction via the use of a Si3N4 ring resonator notch filter (RRNF) is proposed and experimentally demonstrated as a means for improving the modulation efficiency in 10-GHz radio-over-fiber (RoF) links. The realized filter is characterized in both the optical and microwave domains and is then exploited in an RoF test bed. Experimental results show a modulation depth improvement of up to 9 dB. © 2009-2012 IEEE.This work was supported by the NANOCAP project A-1084-RT-GC that is coordinated by the European Defence Agency (EDA) and funded by 11 contributing Members (Cyprus, France, Germany, Greece, Hungary, Italy, Norway, Poland, Slovakia, Sloveni, and Spain) in the framework of the Joint Investment Program on Innovative Concepts and Emerging Technologies (JIP-ICET). Corresponding author: A. Perentos (e-mail: [email protected]).Perentos, A.; Cuesta Soto, F.; Canciamilla, A.; Vidal Rodriguez, B.; Pierno, L.; Sánchez Losilla, N.; López Royo, F.... (2013). Using a Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links. IEEE Photonics Journal. 5(1). doi:10.1109/JPHOT.2012.2234094S5
    corecore